The special theory of relativity

A

n the end of the 19th century physics was in a big dilemma: Maxwells theory for light demanded an ether, wich should produce measurable variations in the speed of light for different observers, despite the fact that those variations did not show them selves. That lack of variations contradicted the other big theory at the time, Newtons theory for motion and gravitation. Several attempts were made to unite them, but none seemed convincing. It was at this time Einstien entered. 


Albert Einstein was born in Germany but transfered to Swiss citizenship in response to an increasingly militaristisk atmosphere. He was a very intelliegent student, but he did not like school at all, and he did not do the final tests. Therefore, he could not go to any university in Germany. However, the university of Zurich did not require any final tests, and seemed like a good alternative. It was a common school for enginers and for university teachers. He was almost promised a job as a teacher but he did not get one. In june 1902 he got an employment in the patent office in Bern. This was not an unusual carreir for scientists at this time. The job left him with lots of time for thinking, and he used it considering the same question he had thought of for several years: the unification of Newton and Maxwells theories. And now, finally, he got results.

The special theory of relativity
The whole theory starts (as you might have guessed by now...) with two postulates:

1. The principle of relativity: it is impossible to determine one’s speed relatively to an absolute referense. That means that there is nothing like Aristotele’s absolute rest, and this is the base for Newtons theory.

2. Secondly, the speed of light will be the smae for all observers, no matter wich velocity they are moving at. This is what Maxwells theory predicts, but in the same timethere ia no more a need for the idea of the ether.

Now he had done what scientists had failed to do during all the late 19th century, unite the two theories. The problem is that these two postulates are not consistent with either of the two theories, they will have to be drasticly modified. What Einstein realy was trying to do was to proove that the theory is consequent despite it is being based on the two apparently contradicting postulates. He finally discovered that all the concepts of space ad time that we are used to and the physics had been based on since Newton must be modified. The teory he came up with is something like this:

Changes of time and length
Imagine a spaceship moving trough space. (The tradition actually calls for a train, wich was hi-tech when Einstein lived. Nowadays a spaceship feels more appropriate.) We can now imagine two persons, let’s follow the tradition and call them person A and person B. Person B is in the spaceship, and person A floats in space outside the spaceship and watches it pass by. Now we can observe something quite suprising. Events that  appear to happen simultaneously to person A does not necessarily happen simultaneously for person B. Imagine a lightpulse being sent out from the center of the spaceship, with the same distances to the walls. Person B, who is waching it sees it hit both the walls at the same time, wich is quite naturally since they both travel the same distance at the same speed. But person A hanging in space outside the ship sees a slightly different situation. The wall in the nose of the spaceship is travelling from the lightpulse, giving it a longer way to travel, while the aft wall travels towards the lightray. In classic, Newtonian physics this would have been compensated since the pulse traveling forward would have the ship’s speed added to its own, but in Einsteins theory that is not possible since the speed of light must remain constant. That means that although B sees the pulses hit the walls simultaneously person A does not. This result implies that time itself must be modified.


To keep him company, and to illustrate the basic idea of relativity, person B has a very special watch with him. It consists of two mirrors whith a light ray reflected between them. The time it takes for the lightray to reach a mirror and travel back is called a clock cycle and is two times the distance divided by the speed of  light. If you start to get confused now, look at the picture and things will clear up. Admitably, this is not the type of wach you come to think of first, but it will work.


Here comes the fun part: if we light up the rockets and give the spaceship a constant speed v, our little pilot will not notice anything strange with his watch. That is exactly what the firat postulate says. So far so good. But what does person A see through the window of the rocket passing by? Here comes a bit of a surprise: The lightray is properly reflected on the first mirror. But then both it and the spaceship moves, and when it hits the other mirror it has moved a bit horizontaly as well. When it makes the rest of the journey the same phenomen occurs. The result is that the light, as seen by person A, follows a triangular path. Again, things will get easier to understand if you look at the picture while reading this. The point is that the triangular path is longer than the simple back and forth motion, thus the light travels a longer distance. Newton would agree and continue with: ”and thus person A measures a greater speed of light than person B”. But that is exactly what postulate two forbids! 


So, what does happen? Well, as we stated earlier, the time it takes for the lightray to reach the mirror and travel back again is two times the distance divided by the speed of light. If we keep the speed of light constant and increase the distance, the time will increase. In other words: person A measures a greater clock cycle than B. And not only that: As explained above the light wach is perfectly syncronised with every other clock onboard the spaceship, and to the astronaut’s heartbeat, and even his thoughts. Person A sees all the processes in the spaceship go slower. One could say that the time on the spaceship goes slower.


How slow then is the time onboard the spaceship,  compared to the time A, who does not move, observes? Call the time it takes to complete a clock cycle as measured by A tA, and the same time onboard the spaceship tB. By comparing the two distances, we will find the relation to be 

. 
It’s simple: B sees the lightpulse travel the distance lB (the distance between the mirrors) on the time tB = lB/c. A sees, due to the spaceship’s motion, the pulse move the distance 

 (here we used pytagora’s teorem) on the time 

 wich means that 

, wich we wanted to proove. C is the speed of light. But when the space pilot looks out from his spaceship he will of course see objects passing him, and with the argument above he will find that time is slower for them. Every observer finds that time goes slower on objects in motion relative to him. 


The next thing we are going to do, is to show that distances in space is shortened in the direction of the motion. Let B travel between two points that are at rest relative to A. A sees B travel with the speed v, while B sees A, and the point, travell with the speed -v. B will find that the journey takes the time tB, and therefore measures the length of the journey to dB = vtB. Since B’s clock goes slower than A’s, he will measure a shorter distance than A’s lA = vtA. From the formula above we will get 

. Only distances in the direction of the motion is affected by this. 


Nature it self has given us a good example of these effects: When cosmic radiation hits our atmosphere 60 kilometers above the ground small particles are created: myons. These have a very short lifespan, the half-life T1/2 = 0,0000015 seconds.  (The half-life is the time where half of the particles has desintegrated.) If the particles had followed Newtons physics and travelled from the top of the atmosphere to the ground whith the speed of light it would have taken them 0.002 seconds, which is 133 times their halflife. That would mean that only one in 1040 would reach the earth. That is not very many. In reality, however, one in eight does in fact reach the Earth. How can this be possible? From the Earth the phenomena is explaind by the first formula: Time goes slower on fast moving myons than on slow, and the myons has the time they need to reach the Earth. The myons themselves, or an observer that follows them, explains it with the formula two: the myons travel a shorter way than 60 kilometers.

Changes of mass
Newtons theory is based on his absolute space and time, therefore it is not suprising that more than time must be changed to make Einstein’s theory consequent. The third thing that is changed is mass. It works like this: Imagine person B accelerating. He will of cource not notice any difference depending on which speed he already has, otherwise the first postulate would be wrong. Therefore he measures a constant acceleration. But the acceleration is the change in speed per timeunit (a = dv/dt), and an observer outside, for example good old person A sees how the time inside the spaceship goes slower, thus measures a slower acceleration. The thrust of the engines  is not changed, however, and neither is the force they give. If the observer calculates the mass from Newtons old formula, F = am or m = F/a he will find that it is greater than when the rocket was standing still. From our now well known formula he can calculate the mass to be 

, where 

 is the mass when the rocket is not moving. Another way to look at it is that Newton’s formula has been replaced by Einstein’s 

, were m0 is the mass person A measures when the spaceship is standing still and person B measures all the time. Since the speed of  light is so great, however, the correction is small.


But this has a certain effect on the definition of energy. The definition is, like almost everything in mecanics based on Newtons laws: When a force F has been applied to an object with a mass m over a distance d it is practical to say that we have used enegy, W. (W  stands for work). The amount of work is W=Fd. Based on Newtons formula a = F/m, it is now very simple to show that W=1/2mv2. This is called the objects kinetic energy (or motion energy) and can be seen a measure of the energy that was used to accelerate the object, or the enegy that would be released if the object were slowed down.But now we have modified the formula a = F/m, to the new 

. That means that the formula for kinetic energy must be modified as well. We get a new formula: 

 . When W goes towards c, the work goes towards infinite. To accelerate an object beyond the speed of light would take an infinite amount of work. This formula defines a ”lightwall”. But we have shown that the more work you put into a object, the more mass it gets. The mass is an measure of its energy. If we skip a lot of small steps, a new definition of energy could be E= W + mc2, where W is the work. If we don’t put in any work at all, the object still has an energy E=mc2. It is this energy that is released in all processes that releases energy, for example fire or nuclear fission. If, for example we burn a bit of wood, it will radiate away some energy as heat. The rest (ashes, coal, gas and so on) will have slightly less mass than the piece of wood. And if we heat up an object, give it heat energy, its mass will slightly increase. 


We have a lot of examples on these effects as well. For example, if we accelerate a particle in a particle accelerator, we will soon observe this effect: even if we give the particle energys that would have sent it to many times the speed of light in newtons physics, it stays at a speed slightly smaller that c, but its mass is increased.

The spacetime
The positions of objects measured by a person A in rest, can be illustrated in a space-time diagram. To make it easer to understand (and to draw), we will only show one dimension, which we will call x. This means that we only can keep track of the motions of an object in one direction. Now we can draw a diagram to show the motion of the objects. We will use two axis: on one of them we will put the x coordinates and on the other we will put the time, t, as measured by A. In fact we will not put the time t it self, but rather the distance a lightray would travel in this time, ct. This makes the diagram easier to read. Every point in this diagram represents an event, a thing which happens at a certain time at a certain place. In the middle of the diagram (x = 0) we will put observer A as a long, vertical line. This means that he is at that position all the time. (A space-time diagram can only be drawn around someone that does not accelerate.) Other objects, that do not move relative to A, will also be vertical lines. These will be at the coordinates x, where x is the distance from A. Note that an object 10 meters to the right of A will be a line at x = 10, while an object 10 meters to the left of A will be at x= -10. This simply means that the objects are at the distance x all the time. n object with a constant speed relative to A will be represented as a leaning line, wich means that the object is moving away or towards A with a certain speed. This line is represented by the formula x = vtA, which is one of Newtons old formulas. v is the speed the object is moving with, relative to A. Generally all objects are represented by lines, these lines are called world lines (for some reason). Not accelerated objects follow geodesics in the space time diagram. Accelerated motions are represented by curved lines, which are not geodesics. Please note that. 


How can we define the distance between two points if every observer (as we have seen) easures different distances due to their different speed? We can measure the time it takes for an observer that travels at a constant speed and direction, one who does not accelerate. This is a natural definition, since it is the time measured by an observer moving in a strait line, a geodesic, in the space-time diagram. We call this time (. Note that ( is not the torsion of a curve, as in differential geometry. For every pair of points in the space-time diagram we can calculate (. There are not only straight lines between two points, as can be seen in the picture. The other lines represent accelerated motion. If we know ( for a pair of points, we can also calculate the time t for any observer: Let person A travel with constant speed between the points. He we measure the time (. Let B travell with the speed v relative to A, and measure the time 

. Since v=tx, this means that 

, where x, is the distance B measures. (Actually I don’t find this argument totaly waterproof; x=vt was meant for non accelerated motion. But it’s the best I have found). The last eqation can be rewritten to the form c2(2=c2t2-x2, which better describes what is going on. ( is the same no matter what speed or acceleration the observer has. It is a bit like distances in the old Newtonian physics, where all observers measure the same distance between two points, no matter what speed they had. But in this new relativistic physics space and time can be exchanged: the longer distance one travels in time the shorter one travels in space. That is exactly what the last formula said. Look at the picture with the many worldlines between two points. In the vertical one, the observer does not travel at all in space; only in time. But he travels the whole time ( in time. The more bent the lines are, and the more they differ from a geodesic, the more they travel in space (x) and their time (t) is smaller. The other extreme is the line to the right: it consists of to lines which are sloped 45 degrees, which in our coordinate system represents two oservers that travel with the speed of light. From the formula 

 we will get t=0;  for light the time stands still. But a lightsignal travels the longest distance in space that is possible. 


The plane we have used here (with the ct and the x axis) is called the spacetime. It is two dimensional. In reality we can move in more than one direction. The othor directions we can move in are usually called y and z. If we want to describe reality we must add these to the space time, and we will then get a four dimensional space (ct, x, y and z axis). It is impossible to draw such a space, but we can still calculate important things in it. For example the formula for ( in three dimensions is c2(2 = c2t2-x2-y2-z2 , since a distance in space is 

. The formulas to calculate the time and lenghts measured by different observers are called Lorenz-transformations after another scientist who invented them. This is typical for many parts of the theory of relativity: people had understood parts of it for a long time, but it was Einstein who put them together. 

The twin paradox
Space and time are exchangeble; An example of that is the now famous twin paradox: An astronaut travels for example to a nearby star and back again, while his brother is on earth waiting for him. The event when the astronaut leaves and the event when he gets back are both points in the space-time. The brother on earth has not traveled very far, his worldline between the two points is almost only in time and not in space and thus he travels almoust  the maximum possible distance in time. His brother the astronaut however, travels a long distance in space (twice the distance between the stars) and thus he travels a smaller distance in time. For him the journey has not taked as long time as for his brother on earth and when he gets back he is younger than his brother.


This phenomenon means that we can reach the stars. Many people conclude that if we cannot travel faster than the speed of light it is impossible to reach a star for example 600 lightyears away in less than 600 years. But this is wrong. The time it takes gets smaller the higher the speed. If we could travel at the speed of light it would not take any time at all.


This part of the theory of relativity is called the special theory of relativity, and deals with situations where the gravitation is small. If we, however, want to describe a situation where the gravitation is strong we have to use the general theory of relativiy, in which much has been modified, as we will see in the next chapter.
Preface
T

he theory of relativity is one of our centuries most famous theories. If you ask the man on the street what it is he has certainly heard of it. If you ask him about Quantum chromodynamics he’ll be stuck for an answer. Despite this it is suprisingly few that know what it is all about, and even fewer that have an idea of its history. Therefore it was natural for me to choose it as the subject of my presentation. However, the form of the presentation may suprise those who think this is just another description of the theory itself. It has been dictated by the three goals I have tried to achieve. These are:

1. To give a basic understanding of the theory itself and what it is all about. That is probably all I can do, since I do not master it perfectly myself.

2. To give a view of the theory in a historical perspective. I have tried to show how it is a logical consequence of the time it was created in. I want to show that it is a product of many geniuses over a long time, reaching from the beginning of our civilisation to our century - rather than being a product of one genius, Einstein. I can of course not cover two tousen years of science in a short, written project, or even in a long book. In stead I will show samples that shows the evolution that leads forward to the theory - and beyond. To do this completely I would have needed more samples than the ones I wrote, covering science, philosophy, religion, technology because all these fits together like a jigsaw. But I hope that the ones I did include will be enough to show the idea.

3. My third goal was to describe the theory of relativity as a consistent theory that evolved from some certain postulates in the strict mathematical meaning. This is truly impossible: The first postulates was formulated in Babylonia 2000 years BC. But that is the idea, and even if it isn’t possible to fulfil throughout the project, I have tried to work as much towards it as possible, trying to somehow showing how it develops instead of simply listing the results. 


As you will notice, I do not master all the math needed at the end of the project. But I think much of the theory is possible to understand even if you don’t know the math. A lot of math is also omitted, because it is not very useful to spend two pages trying to explain how a certain result were obtained, while the reader has fallen asleep after the first two lines. But I have not omitted all math, my experience is that it often is very much easier to understand the formulas if you see them written, and not only hear some writers interpretations. But I have tried to write so that most of the math is possible to skip without missing any vital information.


Good luck!

Euclide
A

bout 300 years BC lived a man who was going to determine the evolution of mathematics for over 2000 years to come. Although not much of his work is used in the theory of relativity, I am going to discuss him for two reasons. First, it was he who introduced the modern concept of a (mathematical) theory, and he is therefore a good introduction to a presentation of this kind. Second, he has a great deal to do with the non-Euclidean geometries that was to come. I am of course talking about Euclid, the famous Greece mathematician. 


Euclid did not invent any important math himself. Instead he wrote a big book, ”Elementa”, in which he incorporated all mathematics that were known at that time, and he did so in a strict, mathematical theory. A mathematical theory starts with some postulates. Then one can prove certain theorems. Then we know that if the postulates we started with are true, then the theorems we have deduced are true as well. It is of course not possible to prove the postulates. The whole theory is about the relations between the objects. This might seem a bit pointless, but in fact it makes the theory more useful. That is because anytime you find an object that satisfies  the relations between the postulates, the whole theory can be used to investigate that object. That is exactly what is done in physics. There we find an object in the world that satisfies some certain postulates and then we can use the mathematical theory to study the object. However, to be useful the postulates must fulfill some certain criteria’s:

1. They must be complete. That means that the whole theory is possible to deduce from the postulates. This is not as obvious as it looks, as we soon will see.

2. They must be consequent. That means that it is not possible to deduce two contradicting theorems from them. This is in deed obvious; a theory that says that the sum of the angles in a triangle is both 180 and 270 degrees would not be of much use.

3. They must be independent. That means that none of the postulates can be deduced from the others. If so is the case that ”postulate” is in deed a theorem. If a collection of postulates is both complete and consequent it does not matter very much if they are independent or not, the theory is of course not wrong because we have used to many postulates.

Elementa
Now we can have a look on Elementa. The theory it describes is about geometry. The old Greek math is all about geometry due to a contradiction in their theory of numbers. (They only accepted numbers like n/m where n and m is integers. When the y discovered that it existed numbers that was not ratios between integers, for example 

 they abandoned the whole theory and translated it into geometry. the problem was not solved until the invention of irrational numbers. ) For similar reasons, all the constructions are made with compasses and a ruler. Elementa is divided into 13 ”books” which dicuss different subjects. For example, book three is about the geometry of the circle. The theorems are then numbered, thus 2.34 means the 34th theorem in the second book. Elementa starts with five postulates:

1. A line between two given points [can be drawn].
2. A limited line can be continued.
3. A circle with the center at a given point an a arbitrary radius [can be drawn].
4. All right angles are equally big.

5. If a straight line intersects with two other straight lines so that the inner angles on one side is smaller than 90 degrees, then the two lines will intersect on the side where the two angles is smaller than 90 degrees (and thus are not parallel). This last postulate is equivalent with another: Given a line and a point that is not on the line, you can draw exactly one line through the point that is parallel with the first line, that is, does not intersect it. The second form is often more convenient, and from here on, when I talk of this postulate , I refer to the second form.

The form of Elementa
Then we can have a look at the first theorem (1.1). It explains how to construct a triangle with a certain length on the all sides. It is the normal construction: you have the one line and you wish to draw two others to complete the triangle. You then take the compass and draw one arc from one side of the line and one from the other. Where they intersect you should draw two lines to complete the triangle. From the definition of a circle, it is obvious that this produces the desired result. Or is it? There is no postulate that guaranty that the two arc will intersect at all. Euclid’s postulate system is therefore incomplete! In fact, it wasn’t until 1900 a complete postulate system was constructed. Then David Hilbert  made one in his famous ”Grundlagen der geometrie”, as a part of his giant project to prove the consequence of mathematics. (Which, some years later, in fact were proven impossible.)


Another very famous theorem is Pytagora’s theorem which says: In a right-angled triangle the square of the longer side equals the sum of the squares of the shorter sides. If we call the length of the sides A, B and C, where C is the long one, that means C2 = A2 + B2. There are incredible many proofs for this, but since they are so easy to find I will not list any of them.

Mathematics after Elementa
Despite its many flaws, Elementa is a remarkable book and it immediately became the standard literature for all mathematicians. In fact it partly changed the meaning of the word mathematician since it introduced so many new methods. However, most of the research were about the independence of the postulates. This may seem strange; as mentioned above the independence of the postulates does not affect the stringency of the theory, but it only reflects the view people had of postulates and theorems then. The postulates was regarded as natural statements which were not necessary to prove. Elementa was regarded as the final work in the area, without any need for modifications or additions. Therefore no one worked to develop the theory more, they were proud to know everything there was to know about geometry. But the fifth postulate (or the parallel postulate as it would be known) worried them. They didn’t  think it looked as obvious and natural as the others, and wondered if it really was a postulate after all, and not a theorem. In fact, the history before 1830 is the history of failed attempts to translate the fifth postulate to a theorem. The first one, except maybe for Euclid himself that tried and failed was Proklos, who lived about 450. His mistake is the same as most of his successors, he uses a theorem equivalent with the parallel postulate itself. In fact this was as long as geometry came for several hundred years. The necessary math simply did not exist. But other parts of it evolved, and when Newton had invented the calculus things changed rapidly.
Maxwell
W

hen Newton published his theories of motion and gravity it had an enormous impact on the physics at that time. All theories that were invented (or should it be: discovered?) in those times was based on his. However there was some phenomenons they could not explain: electricity and light. The first experiment on electricity in history was in the antic Greece 400 BC where it was known that a piece of amber wiped with some clothing attracted straws. ”Electron” comes from the word for amber in old Greece. The Etruscans at the same time had methods to control lighting by a arrangement similar to a lighting conductor. Of course no one knew anything of the reasons. On this level it stayed for a very long time.


In 1726 one of Newton’s students, Stephen gray, was able to show that electricity could propagate through a hemp thread. At the end of the 18th century several scientists experimented with electricity. Some of them were Coulomb in France and Volta and Galvani in Italy. Volta was able to produce a battery which produced electricity by chemical reactions. This was something completely new, since it allowed the creation of a steady electric flow instead of a momentary discharge. Very few continued to work with static electricity,  as it became know opposed to the dynamic electricity as the new discovery was named.


This made way for more breakthroughs. In 1820 the Danish scientist Hans Christian Örstedt by mistake held a compass close to a cable and saw it moving. It was the first indication that electric current could produce magnetic effects. This made a lot of inventions possible, like the electromagnet, and some years later the telegraph.  It was also suspected that the inverse effect could occur, that is a magnet could induce electricity into a cable. No one were however able to produce this effect, for a suprisingly long time. 

Induction and feildlines
In 1831 Michael Faraday entered the scene. He was able to show that a moving magnetic field could produce the desired effect. For example, one could move a magnet through a coil. Faraday was the first who really tried to understand what was going on. But instead of formulating laws he drew pictures. He observed the way magnets were affected, and the way iron filing formed up around magnets - and found a pattern. Faraday suggested that a magnet or wire sends out fieldlines in a specific pattern. They were always closed, with no loose ends, and they had a certain direction. They always ran from north to south from a magnet in a never ending circle, and they affected other magnets or induced electricity in cables. The voltage of the current induced was, he found, proportional to the speed with which the fieldlines in the circuit changed. The direction of the current depended on the angle of the magnetic field. This theory was revolutionary in more than one way. First of all it explained what it was intended to explain: induction. Second, since it was not about forces acting at distans, but of lines in empty space, it can be argued that Faraday’s theory was the beginning of field theory.


These discoveries were used to create the first generators. A generator works like this: You make a loop on a wire between a north- and a southpole on to static magnets. When you turn the loop it crosses the fieldlines and they induce a current into the wire. (Getting confused? Look at the picture and things will probably clear up). If you think about it for a second you will see that the loop does not cross the fieldlines at the same speed all the time. When the loop is in the same plane as the magnet(s) it crosses the fieldlines at maximum speed, and when it is at right angle compared to the magnets it does not cross them at all. Since the voltage is proportional to the speed with which it crosses the fieldlines this means that the voltage changes. To add a bit of math: If we call the maximum voltage 

, the angle speed of the loop (, and the time t, the voltage U at a given moment will be 

. In English this means that the voltage is changing. The generator is producing alternating current.


This was another big breakthrough, if not for science so for industry. Now it was possible to produce electricity cheep, transport it without big energy losses (thanks to another invention; the transformator), and finally use it to power motors, light up buildings and everything else electricity makes cheep and clean. Large cooperations were formed in this new field, and lots of money rolled in. The universities around the world profited on this. Large sums were spent on research and new discoveries were made. 

A mathematical theory
When all this had been going on for a while it became embarrassingly clear that there were no real theory for all this. A university started to investigate all the theories that existed at the time. The winning theory was one from 1850 created by James Clerk Maxwell. It was a mathematical descriptions of Faraday’s fields and how they interacted. The math needed is not elementary, however. I will list the equations below:


 

This is partial differential equations, where the unknown function is a vector field, and I certainly do not claim to be able to solve them. However, the solutions describe (or so I’ve heard...) the fields Faraday invented very well. The fieldlines Faraday invented represents the direction of the vectors in the vectorfield. They also describes a new, unexpected effect. Under certain circumstances the equations predicted waves, which moved at a constant speed. They could have almost any wavelength and the speed they propagated  with could be calculated. It matched the speed of light very good. In this way Maxwell proved an hypothesis of Faraday’s, that light was an electromagnetic phenomena. This was proven experimentally some years later, in 1888, when Hertz was able to send energy between two metallic antennas.

After Maxwell
Now there was a problem. Maxwells equations predicted that light would travel at  constant velocity (usually called c). But ever since Newton first released his theory motion had been something relative. If the light was to travel at constant velocity you had to tell what it was relative to. The problem was solved by the introduction of the ether. It was supposed to be a substance present everywhere, filling up everything. While it was totally rigid to electromagnetic waves it let solid objects through without any resistance. It would therefore be very hard to detect it; if all objects fell straight through it, how could you then measure it. But the detection of it would be a splendid confirmation of Maxwells theory, so the search went on and different approaches were suggested. 


In 1883 two Americans, A.A. Michelson and E.W. Orley got a great idea. If the ether is stationary the earth must be moving relative to it. But the light moves at a constant velocity relative to the ether, so while the earth is moving one schoud be able to detect differences in the speed of a light ray as the earth moves in its orbit. When the Earth moved towards the source of light the speed of the Earth would be added to the speed of light, an when it moved from it it’s speed would be subtracted. The Earth moves rather fast, so there should be no problem detecting this difference. Michelson and Orley build a incredible device. It was designed to measured the speed of light and it was built on a big rock, which floated in mercury, so that it should not be affected by other motions. They kept it going for a year, so the Earth would have time to complete a full circle, and then they studied their results. They found nothing. The speed of light was perfectly constant, no matter how fast the Earth moved in different directions.


That ment problem. Maxwells theories had been proven right time after time, yet they seemed to demand an ether. And the ether was impossible to detect. There had to be an explanation. What was done was this: It was argued that, because the same speed of light was detected even when it should not be, the instrument it was measured with must be affected in some way. There came many explanations which all had in common that they claimed that different things happened to different objects moving through the ether. The problem was that this was not detected either.


The situation in the end of the 19th century was critical. But it didn’t take long before a solution turned up.  
Newton
N

o single scientist, except maybe Aristotle, has so completely dominated his time as Newton. In his famous work, ”Philosophie naturalis principia mathematica”, he solved all the contradictions of the old theories and laid the ground for all physics for centuries to come. Principia is about motion, and Newton is able to produce a whole new theory. 


The authority before him was Aristotle, who lived in Greece 200 years BC. He stated that no observations where needed to find out the nature of the universe, and consequently none were made. It is no suprise, therefor, that the theory came out a bit strange. First of all, it stated that the natural movement of a body was rest, so the only way you could make it move was to apply a force to it. The motion of, for example an arrow, was explained by the concept of  ”impulse”: when it was fired it was given an impulse and travelled straight forward until then impulse was used up, and the arrow fell straight down. This somewhat strange result can perhaps be explained by the fact that an arrow flies too fast to be  properly observed. 


One fact that could be observed, however, was the fact that some things fall down, while others fly up. This was explained in a rather complicated way: The four elements were given certain areas, the fire was on the top and earth on the bottom. An object then tried to move to its natural place, so a rock, which was made up of almost only earth fell down though air and water. A flame, on the other hand, was made up of all fire, so it moved up even through air. This meant of course that a heavier object would fall faster, since it contained more earth.

The new theory
This view was accepted and  dominated science for several hundred years. In the seventeenth century however it began to crack up. First of all, it became clear that the planets did not travel in the circular orbits around the earth that Aristotle thought. It was now known that they all circled around the sun, and the orbits were not circular, but instead epilliptic. No one was, however, able to explain what force kept them there. There was also no theory aboute why bodies fell to the ground anymore, since the ”element theory ” had long been abandoned. In the beginning of the seventeenth century, Galilee was able to show that  all bodies fell at the same speed, no matter how heavy they were. It was at this time Newton turned up.


Newton was a true genius. He not only found laws for the motion of all bodies, he also invented the math he needed, calculus, to use them. His most productive year was in 1664 when he lived at his farm in Whoolsthorpe to escape the plague in London. I these years Newton spent much of his time thinking of motion. He came to an amazing result. He formulated his three laws of motion:

1. If no forces are applied, a body travels straight forward at a constant speed.

To change its direction a force must be used. Although this was very different from Aristotle’s version, it reasembled the results of experiments much closer.

2. The force is proportional to the mass of the object and to the acceleration obtained. In a equation:



 ,or in the form used in most schoolbooks today:

F = ma .

This is called the force equation and it is very famous.

An example: to accelerate a cannon shell to a velocity of, say 720 m/s, we need to use a force. To do it in eight meters we have to use acceleration of 32 400 m/s2. If the shell weights 10 kg we will have to use a force of  324 000 N.

3. Every force creates another force in the opposite direction, which is equally strong. This is used in rockets, where a gas is accelerated inone direction and the opposite force of equal strength propels the rocket forward. This is the same as saying that the centre of gravity of a system that is not affected by a force outside does not move.

The principle of relativity
These laws were of course a fundamental breakthrough. Until then everyone had used Aristotle’s work as a base for there own, and had thus used the concept of absolute rest as the natural state, which meant that all objects would stop sooner or later. Newtons laws said the opposite; to stop an object you would have to use a force. This meant that all theories had been wrong, and Newton was not immediately believed, but his theory was so much more correct that it soon was accepted. Newton’s theory contains the principle of relativity, which was first formulated by Galilee. It says that there is no way to tell if you are moving if you don’t have any external references. An example: If you travel in a submarine without any windows you can not tell which speed you are moving at. You can of course measure the speed of the flow of water outside. But the information you really get out of that is which speed the water travels at, relatively to you. In the same way you can, if you are sitting in a train look out and see the ground and the air passing by you, but you have no way of telling if you or the earth is moving. Indeed, the earth moves as well, around the sun, and the sun is moving around the centre of the galaxy. Aristotle would say, that since a body’s natural state is rest it would slow down if it was moving, and thus you could easily determine if you or the ground was moving. But in Newtons theory an objet will not slow down, and it can be argued that the whole idea of what is really moving has no meaning.

A theory about gravitation


Now Newton made his next breakthrough. The story goes, that when he was sitting in his garden, he saw an apple fall, and when he looked up he saw the moon. He then realised that it was the same force that pulled the apple (or any body) to the ground, that held the moon (or any planet) in its orbit. He started to make calculations, and unlike his precursors he had the math he needed. He came to the following result: Every body is attracted to every other body with a force proportional to the to bodies masses and inversely proportional the square of the distance between them. In an equation that is: 

, where G is Newtons gravitational constant, which simply is there to make the result fit into the SI-system. To make the formula predict the observations, G must be very small. That means that the gravitation is not very strong. In fact it takes masses like a planet to create noticeable forces.


Newton did not come up with this formula him self, it was what everyone thought at the time, but he was the only one able to proof  it. When one has solved the equations that come up, the formula does indeed predict the elliptical movements Kepler observed, and it did get correct results for things like apples too. In fact the whole theory was a immediate success. It was so accurate that it was used to find the planet Neptune and all orbits were spot on. Except one. The orbit of Mercury (the planet closest to the sun) was strange. It did not return to the same point, instead the whole ellipse was slowly turning with 35” a year. Astronomers were not worried though, Mercury is hard to observe and its strange orbit was thought to be a measurement error.

Science after Newton


Newtons formulas are very simple and yet they are extremely accurate. Indeed, for many hundred years they were believed to be totally exact, and it is no wonder they completely dominated science for man years to come. Soon came Navior-Stokes equation, which is based on the force equation and describes almost all phenomenons associated to gases, from soundwaves to storms. Some years later Boltzman treated gas molecules as billiard balls and invented the thermodynamics. All these were amazing discoveries and they were all based on Newtons formulas. 


Newton was also very interested in light. He experimented a lot with mirrors pieces of glass and so on. He found out much about it and wrote a book, Optics, in which he describes how he was able to split white light into a spectra. This book was rather much easier to understand than Principia, and was really the one that made him famous .He also tried to treat light with his equations by suggesting that light consisted of small particles which worked a bit like billiard balls, but he had no success. No one else had either, and light was a really a mystery. Some, like Newton liked the particle theory best, while other thought it should be treated like a wave but none of the approaches gave a consistent theory. The world would have to wait until the 19th century for that.

Physics after Einstein
A

fter he had published his famous paper about general relativity, Einstein published another, in which he explained a newly discovered effect that had puzzled scientists for a while. When bombarding a metal plane with light it did not emit electrons in the way it should. He demonstrated that the effect could only be explained if you assumed the light to consist of particles in stead of waves as Maxwells theory stated. This became the basis for a new large theory in physics: the quantum mechanics. It was a correction of Newtons mechanics in much the same way as the theory of relativity was, but in a totally new direction. The theory is even more complex than the theory of relativity, so I can not explain  it here. A fundamental aspect of it is that nothing is totally certain, it can only give probabilities for different things to happen. Everything is uncertain, and it immediately started a debate between the leading physicists. Einstein was totally against it, he made one very famous statement that says about everything of his criticism: ”God does not play dice with the universe”.


Today, quantum mechanics are integrated in every part of our daily life: the computer, the television, the laser - each one is based on quantum mechanics. The last ”classic” field of science is the general theory of relativity. One of toady’s most challenging tasks in modern physics is to unite the theory of relativity and quantum mechanics. The situation is very similar to the one in the beginning of the 20th century: then Newton’s laws had been used to predict orbits and fire cannons for a while, while Maxwell’s theory explained the new radio and electric motor. It seems like we are having the same trouble today, but yet we have not seen any genius that will show us the right way. 


No doubt there will be one. And another after him. And yet another, as long as there are any humans left.

Riemann
A

 major breakthrough in the process of understanding the fifth postulate came 1733, when the Italian mathematician Girolamo Saccheri entered the scene. He’s idea was to prove the parallel postulate indirect. This is a well known method; instead of trying to prove the theorem itself, you prove that its negation is wrong. There are no other alternatives.  To prove that the negation is wrong you can use a lot of methods. The most common one is to show that if you postulate the negation a contradiction occurs, which means that the new postulate is wrong. The parallel postulate has two possible negations:

1. Given a line and a point which not is at the line, no line can be draw that doesn’t intersect the first line.

2. Given a line and a point which not is at the line, more than one line can be drawn that doesn’t intersect the first line.

Now Saccheri started to deduce theorems, looking for a contradiction. As a logican he never found one. But his belief in the parallel postulate was so strong that he were mislead by a false argument.


When you study the 18th century’s philosophy this is not suprising: the empiricism was dominating. It is obvious that it only can be one line through the given point that is parallel with the first, and if it not was possible to prove that, the whole mathematics seemed like nonsense. But Saccheri stood on the edge of non Euclidean geometry. 

Legendre’s ”proof”
In 1794 the book ”Eléments de géométrie”, written by the French mathematician Adrien-Marie Legendre, was published. It was a critical revision of Elementa, which had a large impact on the geometry instruction. He also tries to prove the parallel postulate, with a complicated argumentation about the sum of the angles in a triangle. The theorem that the sum of the angles in a triangle is 180( is equivalent with the parallel postulate. He tried to prove that: (a) If there is a triangle were the sum is greater than 180(, he could construct a series of triangles until the sum of two angles were greater than 180(, and (b) If there is a triangle were the sum is smaller than 180(, it is possible to construct a series of triangles until the sum smaller than zero, which obviously is nonsense. (a) is a contradiction since it is possible to prove that the sum of two angles is smaller than 180( with only the four first postulates. The geometry that you get with only the four first postulates is called ”four postulate geometry” or ”absolute geometry” since it is true weather the fifth postulate is true or not. The conclusion (a) is correct, which leaves us to prove (b). Here Legendre made a mistake. The mistake was to use a theorem which in fact was equivalent with the parallel postulate, a mistake which was several hundreds years old at the time. The contradiction is then explained since the parallel postulate says that the sum is exactly 180(.


Now we have reached the beginning of the 19th century. The first one to realize that the parallel postulate is impossible to prove from the other four postulates was the German mathematician Carl Friedrich Gauss, probably the most brilliant mathematician who has ever lived, perhaps except Arkimedes. Like his predecessors he started by trying to prove it, but got gradually more convinced that it was not possible. But he did not publish anything, and preferred other subjects.

The solution at last
The two mathematicians who finally solved the problem were Nikolaj Lobatjevskij and, independently, Johan Bolyai. Lobatjevsij found the solution two years before Bolyai, but since his article was written on Russian it did not became know in Europe for some years. Johan Boilay’s father was a friend of Gauss and they had often discussed the question. Despite his warnings Johan started to search for a proof  but he soon came to the correct conclusion. In 1825 he was able to construct a geometry were the parallel postulate was replaced by the ”...more than one line” postulate, negation (2) above. The article had 24 pages and came as a appendix to his father’s book, and was published 1832. The same geometry was published in 1829 by Lobajevskij. This geometry is in fact based on the case (b) in Legendre’s ”proof”.


In the case (a) however, Legendre’s proof really is one, and thus it seems logical that no geometry based on (1) can be constructed. But in 1854 the German mathematician Bernhard Riemann gave a famous lecture, ”Uber die Hypothesen, welche der Geometrie zu Grunde liegen”.  In this he slightly modified the definitions (but not the postulates) of the absolute geometry and thus were able to introduce a geometry based on the negation (1). With these two geometry’s the old question about the independence of  Euclid’s postulate system finally solved: The geometry’s based on the parallel postulate and on the negation (2) differs only by that postulate. If it was possible to deduce the parallel postulate all theorems in both geometry’s would be the same. But this is clearly not the case: at least the fifth postulate is different. Note that we used an indirect proof here!


At least one important reason why the non Euclidic geometries were undiscovered for so long was that there were no math to deal with it, while the Euclidic had algebraic geometry. That is a part of mathematics that associates curves with equations. For example a circle has the equation X2 + Y2 =R2, where R is the circle’s radius. This system is based on coordinate systems which are a system to associate numbers to points. This uses real numbers, which the old Greeks did not have, thus their theory for numbers was not at all as great as the theory for geometric shapes. The formula above is a relation between the x and y coordinates of the circle that all points in the circle satisfy. It is in fact Pytaghora’s theorem in slight disguise, since the x and y coordinates together with the radius forms a right angled triangle, where the radius is the longest side. The important thing here is that the formula above, and all other formulas that occur in algebraic geometry is algebraic, which means that it only contains plus, minus, multiplication’s, divisions, potenses and roots. That is not very advanced math, and thus algebraic geometry was well known since the 16th century.

Differential geometry


Newton, however, invented the calculus, and it gave soon birth to a new field of mathematics: differential geometry, in which one studies the behavior of lines and surfaces with calculus. The base for the curves is no longer the relations between the coordinates, instead they are gived as a series of functions of another variable, often called t. This is called the parameter form, and t is called a parameter. For example the equations for the circle now becomes: X = Cos(t); Y = Sin(t). (This is in fact the definition of sinus and cosines). This makes it possible to investigate more complex curves, but it takes more advanced math to study the functions.  To simplify the problem a new coordinate system called the Frenet frame is introduced around each point in the curve and the functions transferred to it are studied. The formulas rapidly becomes hard to follow unless you know a lot about calculus, vector algebra and so on, so I will not go into detail. From the formula it is possible to calculate two quantities usually called ( and (. ( is called the curvature and ( the toration.  The curvation describes how the curve is bend within its plane. The toration is a measure of how much the curve differs from the plane. These vary from point to point on the curve and describes the form the curve has in that point. For example: if  ( = 0 in all the points on the curve the curve is a straight line. If ( = 0 on all the points the curve is in a plane. An example: A spiral can be defined with the equation 

 (The equations grow quite complex quite fast...) This equation describes how the direction of the curve (represented by the vector C) changes as a function of how far we have walked on the curve (s). The parameters a and b determines the appearance of the curve. From this formula we can determine ( and (. ( = a/(a2+b2) and ( = b/(a2+b2).  If ( ( 0 the curve is a three dimensional spiral. It is called left handed or right-handed based on weather ( is smaller or greater than zero, you can look at the little piece of  artwork on the opposite page to see what I am talking about. The spiral is drawn counterclockwise and ( determines in what direction and how fast it is moving from the plane. If (=0 the whole figure is in one plane and forms a circle with the radius a and the curvation (=1/a. 


The good thing (one of them) with differential geometry is that it easily can be generalized to other number of dimensions. With small corrections its formulas can be used to describe surfaces (with dimension 2) instead of curves (with dimension 1). The sufaces is also described by three equations, one for each direction, but here they are functions of two variables. In the same way as a curve’s form is defined by its curvation and toration, the surface is defined by three other quantities, g11  g12 = g21 and g22. To every surface it is possible to define a tangent- and a normalplane. As illustrated in the picture the tangentplane is a plane that only ”touches” the surface, while the normalplane is the plane at the right angle to the tangent plane. The mathematical definition is of course more strict. If a surface intersects with a plane the intersection is a curve (in the same way as a intersection between a curve and a straight line is a point). It is possible to calculate the curvation of the intersection curve between a surface and its normal plane. This curvation is called (n, n stands for ”normal”. (n depends on two things: which point it is calculated in and which angle the normal plane is in. When the normal plane is turned (n will vary. The maximum value is called (1 and the minimum (2. The angles of the maximum an minimum is at right angles to each others. These do of course vary in every point on the surface. The product (1(2 is called K and can be determaned for every point on the surface. It varies depending on the form of the surface and it is called the curvation of the surface. A sphere, for example, has the curvation K=1/r2, while a circle has the curvation (=1/r. 


K is also called the Gauss-curvation and determines if the surface is on one side of the tangentplane or on both. If the surface is on one side of the tangentplane (1 and (2 have the same sign (positive or negative) and the product K is positive, if the surface is on both sides, (1 and (2 has different signs and the product is negative. On the picture paper I have drawn four different surfaces: The first is a plane. It is totally in its tangent plane and the Gauss-curvation K = 0. The Next surface is totally on one side of the tangent plane, and has a positive Gauss-curvation K > 0. The third surface is on both side of its tangent plane and has a negative Gauss-curvation K < 0. This kind of surface is often called a saddle surface due to its appearance. 


The Gauss-curvation is not affected by distancepreserving transformations. In English that means that if you have a surface with a certain Gauss-curvation, you can deform it anyhow you please as long as you don’t stretch it so you affect the distances, and the Gauss-curvation will be the same. For example: if you have a plane with the Gauss-curvation zero, you can roll it to a cylinder and the curvation will still be the same. The last surface in the picture, which is a cylindersurface has also a Gauss-curvation K=0. This behavior makes it possible to determine the curvation of a surface from the ”inside”, you do not have to know how the surface looks from the outside, only the distances between the points in it. Then you could calculate the curvation, but if you for example found that K=0, you could never figure out if it was a cylindersurface or a plane you had investigated.  And if you only could measure the distances between points that would not matter. Another thing you could calculate is the shortest way between two points. Such a line is called a geodesic and it is a reasonable definition of a straight line on a curved surface.


The Earth is an example of a curved surface. It is a sphere with the radius 240 km. The curvation is thus K=1/r2=1/2402=1.73*10-5 Km-1 (see above), which is so small that if you only study a small area of it, you could think it was flat. But if you study a lager area, the effects will be more noticeable. The shortest way between two points on the Earth’s surface is a grand circle, a circle which shares the same center as the sphere. The geodesics on earth’s surface are grand circles.

Differential geometry and non-Euclidianb  geometry
So, what is the connection between differential geometry and non Euclidic geometry? Given straight line (a geodesic) on a flat surface, and a point not at it, it is possible to draw exactly one line that does not intersect with it. What happens if you do the same experiment on a saddle surface? Draw a line a bit away from P and check how many lines (geodesics) you can draw through P. The lines spread themselves and it is possible to draw at least two lines that does not intersect with the first line, in fact you can draw a infinite number of such lines. What if you repeat the experiment on a surface with positive curvation? The lines gets closer to each other and even if they are parallel at the point P they will intersect after a given distance. Compare it to the meridians on earth: they are all parallel at the equator but intersect at the poles.


Obviously a curved surface is a non Euclidean geometry. 1871 another German mathematician, Felix Klein introduced the terms eplliptic, hyperbolic and parabolid geometry for the three different geometry’s. We have the following scheme:

	Klein’s term
	Name
	K=(1(2
	Legendre case
	postulate



	Elliptic
	Rieman
	K > 0
	(1)
	No lines can be drawn.

	Hyperbolic
	Bolaiy-Lobatjevskij
	K < 0
	(2)
	At least two lines can be drawn.

	Parabolid
	Euclides
	K =  0
	-
	Exactly 1 line can be drawn.


But until Einstein appered no one knew what to use it for.
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